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It is shown that parametrical smoothness conditions are sufficient for modeling
smooth spline surfaces of arbitrary topology if degenerate surface segments are
accepted. In general, degeneracy, i.e., vanishing partial derivatives at extraordinary
points, is leading to surfaces with geometrical singularities. However, if the partial
derivatives of higher order satisfy certain conditions, the existence of a regular
smooth reparametrization can be guaranteed. So, degeneracy is no fundamental
obstacle to generating surfaces which are smooth in the sense of differential
geometry. Besides its striking simplicity the approach presented here admits the
construction of smooth spline spaces which have a natural refinement property.
Thus, various algorithms based on subdivision of tensor product B-spline surfaces
become available for surfaces of general type. � 1997 Academic Press

INTRODUCTION

The spline space S0 :=[x : 0 [ R3] is a class of functions over some
domain 0=[|i /R2, i # I�N] formed by a set of compact subdomains |i

provided with a connectivity relation C. The topological structure of the
domain 0 can be visualized conveniently by a two-dimensional mesh as
indicated in Fig. 3.1. The elements of S0 are called spline surfaces over 0.
The restrictions xi of x # S0 to |i are called patches or segments and the
connectivity relation describes how to link them. Points on the graph of
a spline function which are uniquely assigned to one segment are called
interior points, points which are common to exactly two segments form
edges, and points shared by n>2 segments are called vertices of order n.

Here, the segments are assumed to be quadrilateral analytic patches and
so the domain 0 is uniform in the sense that it consists of copies of
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only one set, namely the unit square | :=[0, 1]2; hence, 0=|_I. For
reasons discussed in Section 1, vertices of order n are called regular if n=4
and extraordinary otherwise. If all vertices are regular, S0 is called regular.
However, as a consequence of Euler's theorem relating the number of faces,
edges, and vertices of polyhedra, regular spline spaces only admit the modeling
of surfaces which are homeomorphic to a torus or a plane or parts of it
(see [10]). This well-known observation justifies the necessity of irregular
spline spaces including extraordinary vertices. An irregular spline space is
called semiregular if the extraordinary vertices are separated, i.e., if there is
no edge connecting any two of them. Figure 3.1 shows a part of a semi-
regular domain with two extraordinary vertices of orders three and five,
which are separated by a regular vertex of order four.

When modeling smooth spline surfaces, i.e., surfaces with a well-defined
and continuously varying normal vector, appropriate smoothness conditions
for connecting adjacent patches must be specified. Parametrical smoothness,
i.e., equality up to the sign of the transversal partial derivatives along common
boundary curves, is a natural and convenient choice in the regular case.
However, it is commonly considered to be too restrictive for edges in-
corporating an irregular vertex. So, the concept of geometrical smoothness
has been developed [1, 2, 6�10, 14, 19] for solving the problem. Besides
requiring polynomials of high degree, the major drawback of this approach
is the absence of a natural refinement property as provided by subdivision
algorithms for tensor product spline surfaces.

In this report we present a different way of constructing smooth spline
surfaces of arbitrary topological type. The idea is to use exclusively
parametric smoothness conditions and to overcome the related difficulties
by introducing surface patches which are degenerate in the sense that their
partial derivatives vanish at extraordinary vertices. This method was proposed
in [15�17] and verified strictly in [18, 21] for polynomial patches. Here it
is shown that the method can be generalized to degenerate patches based
on arbitrary analytic basis functions, thus extending the range of applicability
to most spline models currently in use. Besides its striking simplicity the
major benefit of this approach is that it admits the construction of spline
spaces which have a natural refinement property. This should facilitate the
use of many powerful tools and algorithms based on subdivision of tensor
product B-splines to spline surfaces of arbitrary topology. To enumerate
only a few of them, think of surface rendering and determining cross sections
of spline surfaces in computer-aided design or the recently developed
concepts of wavelets and hierarchical basis in the field of approximation
theory.

The paper is organized as follows. In the first section, sufficient regularity
conditions for degenerate analytic surface patches are derived. Roughly
speaking, a surface segment is degenerate if the partial derivatives of order

175A REFINEABLE SPACE OF SPLINE SURFACES



File: 640J 307903 . By:CV . Date:16:07:01 . Time:06:05 LOP8M. V8.0. Page 01:01
Codes: 3120 Signs: 2562 . Length: 45 pic 0 pts, 190 mm

(1, 0), (0, 1), and (1, 1) are zero at one of its corners, and in general, this
will cause a cusp-like geometrical singularity. However, regularity, i.e., the
existence of a regular smooth reparametrization, can be guaranteed if the
partial derivatives of order (2, 0), (2, 1), (1, 2), and (0, 2) are coplanar and
properly arranged at this point. Surface segments of this type are called
D-patches. Further, the behavior of the main curvatures near the singular
point is studied. In the second section, the conditions for D-patches are
applied to polynomial patches in Bernstein�Be� zier form. It turns out that
degeneracy is equivalent to four coalescing Be� zier points while regularity
requires certain neighboring Be� zier points to be coplanar. In the third
section, a space S0 of spline surfaces incorporating D-patches is intro-
duced. It is based on bicubic polynomial patches of first order joining
parametrically smoothly. The elements of S0 can be described in a
geometrical intuitive way by control points, whose topological structure is
a natural generalization of the tensor product arrangement. Unlike proper
control points some of the control points assigned to patches sharing extra-
ordinary vertices cannot be chosen arbitrarily but have to fulfill certain
constraints related to the conditions imposed on D-patches. Therefore, they
will be referred to as quasi control points. In the fourth section, the refinement
property of the spline space S0 is established in terms of a linear map
acting on control points. This map is uniform in the sense that it uses the
same mask of weights equally on the regular and the extraordinary parts
of the surface. In the fifth section, a linear subspace S4

0 /S0 is specified
by replacing the coplanarity condition for quasi control points by fixed
linear dependencies. Thus, by providing linearity, one of the major prereq-
uisites for various applications is fulfilled. In the sixth section methods for
projecting arbitrarily chosen control points to the space of quasi control
points are given. On one hand, this is of particular importance for design
purposes where control points are assumed to be manipulatable without
restrictions. But on the other hand, this allows the construction of a family
of real-valued B-spline functions spanning a space of smooth spline surfaces
and providing most of the favorable properties of ordinary B-splines.

1. REGULARITY OF DEGENERATE PATCHES

Consider n # N"[1, 2] analytic surface segments over the unit square
| :=[0, 1]2,

x j : | % u :=(u, v) [ :
�

p, q=0

A j
pqu pvq # R3, j=1, ..., n, (1.1)
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Fig. 1.1. Parametrically smooth contact of two patches.

joining parametrically smoothly according to

x j (0, t)=x j+1(t, 0), x j
u(0, t)=&x j+1

v (t, 0), t # [0, t]; (1.2)

see Fig. 1.1. Here and subsequently, the index j runs from 1 to n and has
to be understood modulo n. By uniqueness of Taylor series, the smoothness
conditions imply

A j
0r=A j+1

r0 , A j
1r=&A j+1

r1 , r # N0 . (1.3)

For r�2, these equations are decoupled and no problems arise. However,
for r # [0, 1] we obtain a cyclic system of equations,

A j
00=A j+1

00 , A j
10=&A j+1

01
(1.4)

A j
01=A j+1

10 , A j
11=&A j+1

11 .

The first equation simply defines the common center M :=A1
00= } } } =An

00 ,
whereas the other three equations lead to

A j
01=&A j+2

01 =A j+4
01

A j
10=&A j+2

10 =A j+4
10 (1.5)

A j
11=&A j+1

11 =A j+2
11 .
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For all n # N, this system has the trivial solution

A j
10=A j

01=A j
11=0, j=1, ..., n, (1.6)

corresponding to patches x j, which are degenerate in the sense that they
are singularly parametrized at M and consequently not necessarily smooth.
For n even, there exist additional nontrivial solutions, which are 2-periodic
for n�2 odd and 4-periodic for n�2 even. However, taking into account that
the geometry of the configuration requires n-periodic solutions, it turns out
that only the case n=4 admits reasonable nontrivial solutions. Therefore,
it is commonly called the regular case. This observation was made frequently
before [e.g., 8, 10], and usually one tries to solve this problem by introducing
so-called geometrical smoothness conditions. They are weaker than (1.2) but
still guarantee smooth joints in the sense of differential geometry. The idea
of accepting the trivial solution (1.6) can be found in [17, 15, 16], however,
without being verified rigorously. To do so we temporarily confine ourselves
to the examination of a single singularly parametrized surface segment and
start with the following definitions.

Definition 1.1. An analytic surface segment x of type

x : | % u :=(u, v) [ :
�

p, q=0

Apqu pvq # R3 (1.7)

is degenerate if

A10=A01=A11=0. (1.8)

A degenerate surface segment x is called a D-patch if there exist constants
:, $ # R and ;, # # R+ such that

\A21

A12+=\:
#

;
$+\

A20

A02+ . (1.9)

A D-patch is said to be generic if A20 and A02 are linearly independent.

Theorem 1.2. A generic D-Patch x is regular at A00 ; that is, there exists
a regular smooth parametrization representing x, locally. The tangent plane
passing through A00 is spanned by A20 and A02 .

Proof. Since A20 and A02 are assumed to be linearly independent, one
can choose a coordinate system such that A00=O is the origin and
(A20 , A02)=(e1 , e2) are the first two unit vectors. Using the fact that the
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coefficients :, ;, #, $ do not depend on the particular choice of coordinates
we obtain A20=(1, 0, 0), A21=(:, ;, 0), A02=(0, 1, 0), A12=(#, $, 0), and

x(u) u2+#uv2+O(u2v+u3+v3+(u+v)4)

x(u)=: \y(u)+=\v2+;u2v+O(uv2+u3+v3+(u+v)4)+ . (1.10)

z(u) O(u3+v3+(u+v)4)

The xy-plane is expected to be the tangent plane at the origin, so we try
to represent x as the graph of some function h(x, y) near the origin, i.e.,

(x, y) [ (x, y, h(x, y)) # x. (1.11)

This is possible if the projection of x to the xy-plane is locally injective or,
equivalently, if the function x : U= % u [ (x(u), y(u)) is invertible for
U= :=[u # | : &u&<=] and = small enough. Denote the Jacobian of x by J
and the symmetrized Jacobian by

J� :=(J+JT)�2; (1.12)

then a short computation yields

trace J� (u)=2(u+v)+O((u+v)2)
(1.13)

det J� (u)=2(;u3+#v3+2uv)+O(u2v+uv2+(u+v)4).

Both expressions are positive for u # U= "(0, 0) and = sufficiently small. For
the trace, this is obvious, and for the determinant it can be shown as
follows: The inequalities

;u3+#v3+2uv�2uv
(1.14)

;u3+#v3+2uv�}(u+v)3

with } :=min[;, #, 1
3] hold for all ;, #>0 and u # |. Thus,

det J� (u)�2uv+O(u2v+uv2)+}(u+v)3+O((u+v)4)

�(2uv+}(u+v)3)(1+O(u+v)). (1.15)

With the trace and determinant being positive, the matrix J� (u) is positive
definite; i.e.,

rJ(u) rT=rJ� (u) rT>0 (1.16)
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for every row-vector r # R2"(0, 0) and u # U= "(0, 0). Now, in order to show
injectivity of x, consider two points u1 , u2 # U= with x(u1)=x(u2). Define
r :=u2&u1 and

s(t)=rx(u1+tr), t # [0, 1]; (1.17)

then s(0)=s(1). Consequently, by the mean value theorem, there is a
{ # (0, 1) with

s$({)=rJ(u1+{r) rT=0. (1.18)

Either u1=u2=(0, 0) or the argument of the Jacobian is an element of
the convex set U="(0, 0) and r=(0, 0) by (1.16). Hence, x is injective for
= sufficiently small and the patch x can be parametrized near the origin
according to (1.11) with

h(x, y) :=z(x&1(x, y)), (x, y) # x(U=)=: V= . (1.19)

x&1 is continuous on V= and, moreover, it is also continuously differentiable
on V="(0, 0). This follows from the inverse function theorem and the
inequality

det J(u)�det J� (u)>0, u # U="(0, 0), (1.20)

where the first estimate is valid for arbitrary 2_2-matrices satisfying (1.12).
For the gradient of h we obtain, using the chain rule and (1.15),

lim
(x, y) � (0, 0)

&{h(x, y)&= lim
u � (0, 0)

&{z(u) J(u)&1&

= lim
u � (0, 0)

O(u2v+uv2+(u+v)4)
det J(u)

� lim
u � (0, 0)

O(u2v+uv2+(u+v)4)
2uv+}(u+v)3 =0. (1.21)

As an immediate consequence of the mean value theorem, this implies that
h is continuously differentiable on the entire domain V= and {h(0, 0)=(0, 0).
So, (1.11) is a regular smooth parametrization of x near the origin and the
tangent plane at the origin is spanned by A20 and A02 as stated. K

Although not always stated explicitly, D-patches are assumed to be
generic throughout this paper. The exceptional case of nongeneric D-patches
is of minor importance and not considered here.

The conditions imposed on D-patches are necessary for regularity in the
following sense: Assume that (A20 , A02), (A20 , A21), and (A02 , A12) are
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linearly independent, respectively, and define the normal vector n(u) of x
at a regularly parametrized point x(u) by

n(u) :=
xu(u)_xv(u)

&xu(u)_xv(u)&
. (1.22)

Then we obtain for different paths of parameters approaching the origin:

lim
t a 0

n(t, t)=
A20_A02

&A20_A02&

lim
t a 0

n(t, 0)=
A20_A21

&A20_A21&
(1.23)

lim
t a 0

n(0, t)=
A12_A02

&A12_A02&
.

Regularity implies equality of all three expressions, and so, obviously,
A20 , A02 , A21 , and A12 must be coplanar. Using the representation (1.9) we
obtain

lim
t a 0

n(t, 0)=sign(;)
A20_A02

&A20 _A02 &
, lim

t a 0
n(0, t)=sign(#)

A20_A02

&A20_A02&
(1.24)

and, consequently, ; and # must be positive.
Considering the main curvatures }1 , }2 of D-patches it turns out that, in

general, they diverge near the singular point. A suitable measure for the
rate of divergence, which is independent of the particular parametrization,
is the set of exponents p # R+ for which |}1, 2 | p is integrable over x near the
singular point.

Definition 1.3. The seminorm & }&p, = , p�1, =>0, for functions f over
x is given by

& f &p, = :=\|x=

| f | p dS+
1�p

, (1.25)

where x= denotes the restriction of x to the domain U= .

Theorem 1.4. &}i &p, = , i # [1, 2], is finite for 1� p<4 and = sufficiently
small.
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Proof. A detailed proof of this theorem is rather technical without
revealing deeper insight into the problem. So we confine ourselves to an
outline of the crucial estimates. Consider the patch x in canonical form
(1.10) and introduce polar coordinates according to (u, v)=r(cos(t),
sin(t)), (r, t) # [0, =)_[0, ?�2]. Then we obtain for the first fundamental
form

g :=\xu } xu

xu } xv

xu } xv

xv } xv+=O(r2) (1.26)

and, using the inequalities (1.14),

det g=&xu_xv&2=O(r4)
(1.27)

(det g)&1=O(1�r4).

By (1.10), the normal vector n converges to the third unit vector e3

according to n&e3=O(r). This implies for the second fundamental form

h :=\n } xuu

n } xuv

n } xuv

n } xvv+=O(r). (1.28)

Now, we find for the mean curvature H and the Gaussian curvature K,

2H=}1+}2=trace(hg&1)=O(1�r)
(1.29)

K=}1}2=det h�det g=O(1�r2),

and consequently, the main curvatures are of order }i=O(1�r), i # [1, 2].
Finally, we obtain

&}i& p
p, ==|

?�2

0
|

=

0
|}i |

p &xu _xv& r dr dt=|
=

0
O(r3& p) dr (1.30)

and finiteness of the integral for 1� p<4. As can be shown by examples,
the given range of exponents is sharp in the sense that the integral is not
necessarily finite for p=4. K

2. DEGENERATE BE� ZIER PATCHES

The results derived in the preceding section suggest that D-patches are
suitable for generating smooth surfaces using various types of basis functions,
including polynomial, rational, trigonometric, or exponential splines.
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However, the further development of the theory will be restricted to a case
of particular interest, namely modeling surfaces by polynomial patches.

As a common practice in computer-aided design we replace the monomial
representation (1.7) of a polynomial patch by the more convenient Bernstein�
Be� zier form (2.2). To this end denote the Bernstein polynomials of degree
d�2 by

b p
d(u) :=\ d

p+ u p(1&u)d& p, p=0, ..., d,
(2.1)

bd (u) :=[b0
d (u), ..., bd

d (u)].

The Be� zier patch xB corresponding to a (d+1)_(d+1)-matrix B of Be� zier
points Bpq # R3 is defined by

xB (u, v)=bd (u) Bbd (v)T, (u, v) # [0, 1]2. (2.2)

The following lemma provides necessary and sufficient criteria for Be� zier
patches matching Definition 1.1. Here and subsequently, it is assumed that
the singular point is located at (u, v)=(0, 0). Due to the inherent symmetries
of the Bernstein�Be� zier representation this is no loss of generality.

Lemma 2.1. A Be� zier patch xB is degenerate if and only if the Be� zier
points B00=B10=B01=B11 coalesce. xB is a D-patch if and only if, in
addition, there exist constants :, $ # R and ;, # # R+ such that

\B21&B00

B12&B00+=\:
#

;
$+\

B20&B00

B02&B00+ (2.3)

Proof. Expanding (2.2) yields

xB (u, v)=B00+d((B10&B00) u+(B01&B00) v)

+d 2(B11+B00&B10&B01) uv+h.o.t., (2.4)

and comparison with (1.8) shows that xB is degenerate if and only if B00=
B10=B01=B11 . Using these identities, we obtain from (2.2)

xB =B00+d(d&1)((B20&B00) u2+(B02&B00) v2)�2

+d 2(d&1)(B21&B20) u2v+(B12+B02) uv2)�2+h.o.t., (2.5)

and xB is a D-patch if and only if there exist constants :, $ # R and
;, # # R+ with

d 2(d&1) \B21&B20

B12&B02+=d(d&1) \:
#

;
$+\

B20&B00

B02&B00+ . (2.6)
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The latter equation is equivalent to

\B21&B00

B12&B00+=\B21&B20

B12&B02++\B20&B00

B02&B00+
=\:�d+1

#�d
;�d

$�d+1+\
B20&B00

B02&B00+ (2.7)

and renaming the matrix entries by :, ;, #, $, respectively, completes the
proof. K

Corollary 2.2. The tangent plane of a D-patch in Bernstein�Be� zier
form (2.2) at the singular point is determined by B00 , B20 , and B02 .

Degenerate bilinear patches were excluded a priori since, evidently, they
are shrunk to single points rather than being proper surface segments. But
there is a further unwelcome phenomenon raising the bi-degree d which
is necessary for generating reasonable D-patches. If d=2 the boundary
curves xB (t, 0) and x B (0, t) emanating from the singular point degenerate
to straight lines, thus restricting the shape of patches inadmissibly. In
general, choosing d�3 is sufficient to avoid this effect, except for one case.
It is conceivable that a patch has not only one but several singular points.
If d=3 and if besides xB (0, 0) also one of the adjacent corners xB (1, 0) or
xB (0, 1) is singular then the boundary curve connecting the singular points
is a straight line, again.

3. A SPLINE SPACE INCORPORATING D-PATCHES

In order to obtain smooth surfaces a spline space must be provided with
a set of smoothness conditions. One part of these smoothness conditions
requires the segments to be parametrized by smooth functions. The other
and less trivial part establishes rules how to join adjacent patches. The
spline space S0 to be considered here is defined over some semiregular
domain 0 and the patches are bicubic polynomials joining parametrically
smoothly, according to (1.2). In view of the observations made in the
preceding section, this choice is the simplest one, avoiding unwelcome
geometrical restrictions, and is merely made for the sake of clarity.
Generalizations to irregular domains and patches of arbitrary degree are
straightforward. By the way, any irregular domain can be made semi-
regular by splitting each subdomain into four quadratic pieces. So,
semiregularity is not an essential restriction.
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Fig. 3.1. Domain 0��structure of patches and control points.

An important property of S0 is that it can be represented by a set of
control points. They are arranged according to the structure of patches (see
Fig. 3.1), and give an intuitive geometrical description of the corresponding
spline surface. Thus, one of the major benefits of modeling with B-splines
is preserved. Dealing with bicubic patches joining with smoothness of first
order it seems reasonable to choose control points compatibly to bicubic
tensor product B-splines with equally spaced double knots. First, this
means that four control points are assigned to the interior of each patch.
Second, passing from control points to Be� zier form is characterized by the
fact that the control points themselves are Be� zier points from which the
remaining ones assigned to the edges are simply computed by averaging of
direct neighbors. This arrangement of control points turns out to be
equally suitable for representing S0 despite of its higher combinatorial
complexity. To state this fact more precisely we start with considering a
regular patch xi; i.e., xi incorporates no extraordinary vertices. The corre-
sponding 4_4-matrix Ci of control points is assembled by the control
points assigned to xi and its eight neighbors as indicated by Fig. 3.2.

Fig. 3.2. Matrix Ci��regular case.
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Denote by c3(u) :=[c0
3(u), ..., c3

3(u)] the vector of the four cubic B-splines
supported on [0, 1] with double knots at the integers. Then the tensor
product spline surface corresponding to Ci is

xi (u, v)=c3(u) Cic3(v)T;

see [11] for a comprehensive introduction to B-spline theory. In order to
represent xi in Bernstein�Be� zier form,

xi (u, v)=b3(u) Bib3(v)T,

according to (2.2), Ci can be transformed to the matrix Bi of Be� zier points
by means of de Boor's knot insertion algorithm [11]. The rule turns out
to be particularly simple,

Bi :=ACiAT, A :=\
1�2
0
0
0

1�2
1
0
0

0
0
1

1�2

0
0
0

1�2+ . (3.1)

As mentioned above, this means that the four inner control points remain
unchanged, whereas the remaining ones are obtained by averaging. Near
an extraordinary vertex of order n the situation is only slightly different.
Again, four control points [C j

11 , C j
12 , C j

21 , C j
22] are assigned to each of the

n patches x j, j=1, ..., n, and as in the regular case they are assumed to
coincide with the inner Be� zier points of the corresponding patch. According
to the results of the first section, the patches x j must be bicubic D-patches,
implying that the control points cannot be chosen completely arbitrarily.
Unlike ordinary control points they have to satisfy certain constraints
stemming from Lemma 2.1. In order to emphasize this difference the points
C j

11 , C j
21 , C j

12 will also be referred to as quasi control points in contrast
to proper control points which are free of restrictions. First, Lemma 2.1
enforces that the n innermost quasi control points coalesce, i.e.,

C1
11= } } } =Cn

11=: M. (3.2)

Exploiting this fact, the smooth joint of two adjacent patches x j, x j+1

according to (1.2) can be achieved using quite the same averaging process
as in the regular case. Defining the 4_4-matrices C j as indicated by
Fig. 3.3 the matrices B j of Be� zier points are given again by

B j :=AC jAT=\
M
M

(C j
21+C j&1

12 )�2
b

M
M
C j

21

b

(C j
12+C j+1

21 )�2
C j

12

C j
22

b

b
b
b
b + . (3.3)
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Fig. 3.3. Matrix C j��extraordinary case.

Note that the definition of C j differs from the regular case only by the
somewhat artificial assignment of the fourfold entry M. Comparison of
(3.3) with Lemma 2.1 yields

Corollary 3.1. The quasi control points C j
11 , C j

12 , C j
21 must satisfy the

following constraints:

(i) The points C1
11= } } } =Cn

11=: M coalesce.

(ii) There exist constants : j, $ j # R and ; j, # j # R+ such that for all
j=1, ..., n

\C j
21&M

C j
12&M+=

1
2 \

: j

# j

; j

$ j +\C j
21+C j&1

12 &2M
C j+1

21 +C j
12&2M+ . (3.4)

Fig. 3.4. Spline surface near an extraordinary vertex of order n=5.
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A typical example illustrating the theory developed in this section is
given in Fig. 3.4. On the left-hand side, one sees control points ( b ) and
quasi control points ( v), together with the patch boundaries near an extra-
ordinary vertex of order n=5. On the right-hand side, the corresponding
shaded spline surface is shown.

4. THE REFINEMENT PROPERTY

The major benefit of the approach presented in the previous sections is
that the spline space S0 is refineable in the following sense: A refined
domain 0� is obtained by splitting every subdomain (|, i) of 0 into four
smaller squares and then rescaling the new subdomains to original size.
Thus, the original domain 0=|_I is transformed to 0� =|_(I_[1, 2, 3, 4]).
It is provided with the new connectivity relation C� which is simply
obtained from C by two steps. First, each pair of neighbors is converted
into two pairs according to the split of the corresponding subdomains.
Second, the relations between any four new subdomains stemming from the
split of the same original subdomain have to be added. The spline space S0

and its refinement S0� are similar in the sense that number and order of the
extraordinary vertices coincide; that is, all new inserted vertices are regular.
The refinement process is illustrated in Fig. 4.1.

The generation of S0� from S0 is exclusively based on topological facts
and actually rather trivial. However, and this is the crucial point, there
exists an induced analytical transformation acting on spline functions
which is characterized by the invariance of graphs.

Fig. 4.1. Refining a domain 0 [ 0� .
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Theorem 4.1. There exists a canonical embedding F : S0
/�S0� such

that for all spline surfaces x # S0 and x~ :=F(x) # S0� the graphs x(0) and
x~ (0� ) coincide when regarded as point sets in R3.

Proof. The proof is constructive. Consider a segment

xi : (u, v) [ b3(u) Bib3(v)T (4.1)

of the spline surface x # S0 . Then the four corresponding segments,

x~ i, 1 : (u, v) [ b3(u) B� i, 1b3(v)T :=x i (u�2, v�2)

x~ i, 2 : (u, v) [ b3(u) B� i, 2b3(v)T :=x i ((u+1)�2, v�2)
(4.2)

x~ i, 3 : (u, v) [ b3(u) B� i, 3b3(v)T :=x i (u�2, (v+1)�2)

x~ i, 4 : (u, v) [ b3(u) B� i, 4b3(v)T :=x i ((u+1)�2, (v+1)�2),

of x~ :=F(x) are generated by the well-known procedure of subdividing
Be� zier patches [11]. By symmetry, it is sufficient to specify only one formula
for computing B� i, k, e.g.,

B� i, 1 :=SBiS T, S :=\
1

1�2
1�4
1�8

0
1�2
1�2
3�8

0
0

1�4
3�8

0
0
0

1�8+ . (4.3)

By construction, �k x~ i, k(|)=x i (|) and, thus, applying subdivision to all
patches implies x~ (0� )=x(0) as required. Further, it is evident that the new
patches x~ i, k join parametrically smoothly. So it remains to show that sub-
division applied to D-patches yields D-patches, again. To this end consider
n D-patches x j sharing the extraordinary point M. Specifying only the
relevant entries of the subdivided matrix of Be� zier points we find

B� j, 1=
1
8 \

8M
8M

6M+2B j
20

b

8M
8M

6M+B j
20+B j

21

b

6M+2B j
02

6M+B j
02+B j

12

b
b

b
b
b
b + . (4.4)

The four entries in the upper left corner coincide and a short computation
shows that

\B j
21&M

B j
12&M+=\: j

# j

; j

$ j+\B j
20&M

B j
02&M+ (4.5)
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implies

\B� j
21&M

B� j
12&M+=

1
2 \

: j+1
# j

; j

$ j+1+\
B� j

20&M
B� j

02&M+ . (4.6)

Consequently, the coefficients in question are positive and x~ j, 1 is a D-patch.
K

As discussed in the preceding section, switching between the representation
by Be� zier points and control points is particularly simple. In one direction,
it is done by averaging and in the other direction by deleting the Be� zier
points assigned to the edges. Thus, the refinement process described in
terms of Be� zier points has a counterpart in the space of control points.
Starting with the original control points the corresponding Be� zier points
have to be computed first by (3.1). Then subdivision is carried out in the
space of Be� zier points according to (4.3), and finally the new control points
are obtained by inverting (3.1). Since (3.1) is equally valid for regular and
extraordinary patches we obtain a single subdivision formula combining
these three steps,

C� i, 1=TCiTT, T :=A&1SA=
1
8 \

6
2
1
0

2
6
5
2

0
0
2
5

0
0
0
1+ . (4.7)

Due to symmetry, the corresponding expressions for C� i, 2, C� i, 3, C� i, 4 need
not be specified explicitly. Actually, (4.7) contains a lot of redundancy,
since applying it to all patches will cause multiple evaluation of many new
control points. Evidently, it is sufficient to restrict the result of (4.7) to the
inner 2_2-submatrix C� i

2: 3 of C� i which contains only those new control
points assigned to the patch x~ i, 1. Moreover, it turns out that C� i

2: 3 depends
only on the upper left 3_3-submatrix C i

1: 3 of Ci and we obtain the reduced
formula,

C� i, 1
2: 3=TrC i

1 : 3TT
r , Tr :=

1
8 \

2
1

6
5

0
2+ (Fig. 4.2). (4.8)

Finally, some remarks:

v When the subdivision algorithm is iterated it will generate a sequence
Cm , m # N, of control nets converging to the originally defined spline
surface x. The rate of convergence is the same as for repeated subdivision
of bicubic Be� zier patches, namely O(4&m) [3, 12].

v The subdivision algorithm presented here is the first one working on
meshes of arbitrary topology which converges to an explicitly known limit.

190 ULRICH REIF



File: 640J 307918 . By:XX . Date:15:07:01 . Time:02:38 LOP8M. V8.0. Page 01:01
Codes: 2127 Signs: 1558 . Length: 45 pic 0 pts, 190 mm

Fig. 4.2. Application of the reduced subdivision formula (4.8).

v It is a noteworthy fact that the subdivision formula (4.8) is
equally valid for regular and degenerate patches. This uniformity should be
advantageous for implementations.

5. A LINEAR SUBSPACE

The spline space S0 as defined in the third section reveals two drawbacks
stemming from the conditions imposed on quasi control points. The first is
that these conditions are not linear implying that S0 is a nonlinear space.
This could be a serious problem for further conceivable developments such
as approximation of surfaces, constructing wavelets or applications in
the theory of finite elements. The second concerns the fact that the sheer
presence of conditions is a fundamental obstacle to applications in computer
aided design systems. Methods for overcoming these difficulties will be
presented in this and the next section.

The problem of nonlinearity can be solved by identifying a linear sub-
space S4

0 /S0 . To this end the conditions listed in Corollary 3.1 must
be modified. The first condition is linear and can be kept. The second
condition becomes linear when the constants : j, ; j, # j, $ j are not merely
assumed to exist but are specified explicitly and fixed. Thus, these constants
play the role of shape parameters, for instance just like relative knot
spacings in B-spline spaces. When choosing the constants : j, ; j, # j, $ j one
must take into consideration that they have to satisfy a certain consistency
condition related to the periodic structure of (3.4).
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Lemma 5.1. Assume that a set of quasi control points satisfies the
constraints specified in Corollary 3.1. Then

`
n

j=1

8 j=E, 8 j :=
1
; j \ :� j

:� j$� j&; j# j

1
$� j+ , (5.1)

with :� j :=1&: j, $� j :=1&$ j, E denoting the identity, and the product sign
addressing multiplication from the left.

Proof. Introducing the quantities

p j :=\C j
21+C j&1

12 &2M
C j

21&C j&1
12 + , (5.2)

a short computation shows that (3.4) implies p j+1=8 jp j. Thus, by
periodicity, p1=pn+1=>n

j=1 8 jp1. Since

p1=\ 1
&:� 1

0
;1+\C1

21+C0
12&2M

C2
21+C1

12&2M+ , (5.3)

the two vectors forming p1 are linearly independent if the patch x1 is
generic and, consequently, the product of the matrices 8 j has to be the
identity. K

Definition 5.2. A set of real constants * :=[: j, ; j, # j, $ j, j=1, ..., n]
is called feasible if ; j, # j>0 and if >n

j=1 8 j=E. If S0 is a spline space
incorporating m extraordinary vertices of order n+ , +=1, ..., m the sub-
space S4

0 is characterized by m feasible sets of constants 4 :=[*1 , ..., *m]
via the following constraints on quasi control points:

(i) For all +=1, ..., m the points C1
+, 11= } } } =Cn+

+, 11=: M+ coalesce.

(ii) For all +=1, ..., m the points C j
+, 21 , C j

+, 12 form a solution of the
periodic system

\C j
+, 21&M+

C j
+, 12&M++=

1
2 \

: j
+

# j
+

; j
+

$ j
++\

C j
+, 21+C j&1

+, 12&2M+

C j
+, 12+C j+1

+, 21&2M++ , j=1, ..., n+ .

(5.4)

Theorem 5.3. S4
0 /S0 is a linear space of dimension

dim S4
0=3 \4*I&3 :

m

+=1

(n+&1)+ , (5.5)

where *I denotes the total number of patches.
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Proof. Evidently, S4
0 is linear. The expression in brackets is the

number of scalar degrees of freedom which must be multiplied by three
since the coefficients lie in R3. 4*I is the total number of control points
and, thus, it has to be shown that 3(n+&1) is the number of linearly
independent conditions assigned to an extraordinary vertex of order n+ .
Clearly, the first constraint yields n+&1 independent conditions. As shown
in the proof of Lemma 5.1 the second constraint is equivalent to p j+1=
8 jp j, providing 2n+ equations for the 2n+ unknowns p j. However, exactly
two of them can be chosen arbitrarily. If, for instance, p1 is given then the
other variables are uniquely determined by the iteration p j+1=8 jp j,
j=1, ..., n&1. The remaining equation p1=8npn is fulfilled automatically,
since

8npn=8n `
n&1

j=1

8 jp1= `
n

j=1

8 jp1=p1. (5.6)

Thus, the rank of the second constraint is 2n+&2 and the total effective
number of conditions is 3n+&3 as required. K

From a topological point of view the structure of patches forming a
spline surface reveals certain local symmetries near an extraordinary vertex
of order n. Roughly speaking, there is an n-fold rotational symmetry and
an additional invariance under reflection. A case of particular interest is
that the spline space itself reflects these symmetries. In other words,
there is no reason why we should treat one of the n D-patches sharing an
extraordinary point differently from the others or why we should give
preference to a particular direction of rotation around the center. So the set
of quasi control points should be invariant under the shift

S : C j
11 , C j

21 , C j
12 [ C j+1

11 , C j+1
21 , C j+1

12 (5.7)

and the reflection

R : C j
11 , C j

21 , C j
12 [ C& j

11 , C& j
12 , C& j

21 . (5.8)

This feature can be achieved readily by a special choice of constants.

Definition 5.4. A set of constants *=[: j, ; j, # j, $ j, j=1, ..., n] is
called symmetric if :1=$1= } } } =:n=$n==: : and ;1=#1= } } } =;n=
#n=: ;. The spline space S4

0 is called symmetric if 4=[*1 , ..., *m] consists
of feasible symmetric sets.

Theorem 5.5. A symmetric set of constants is feasible if ;>0 and

:=1&; cos .n , .n :=2?�n. (5.9)
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Proof. Choosing :=1&; cos .n implies that the eigenvalues of 8 :=
81= } } } =8n are exp(\i.n). Hence, >n

j=1 8 is the identity. K

From a purely analytical point of view the conditions specified in
Theorem 5.5 are not necessary. In general, choosing :=1&; cos(2?k�n),
k # [1, ..., n&1]"[n�2] yields eigenvalues exp(\2?ki�n) and, hence, a
feasible set. The cases k=0 and, for n even, k=n�2 are leading to double
eigenvalues and can be ruled out by inspection. However, one can show
using discrete Fourier analysis that k � [1, n&1] is leading to inadequately
arranged quasi control points corresponding to surfaces with local self-
intersections near the extraordinary point. In the sense of differential
geometry such surfaces are not smooth and thus (5.9) turns out to be both
necessary and sufficient.

Finally, let us discuss the refinement of S4
0 induced by F : S0 [ S0� . It

turns out that the refined space S4�
0� :=F(S4

0) is linear, again. However, the
process is not uniform in the way that the sets of constants 4 and 4� are
different.

Theorem 5.6. Consider the space S4
0 with 4 :=[*1 , ..., *m] and

*+ :=[: j
+ , ; j

+ , # j
+ , $ j

+ , j=1, ..., n+], +=1, ..., m. Refinement by F as defined
in the proof of Theorem 4.1 yields the linear space S4�

0� :=F(S4
0)/S0� ,

where

\:~ j
+

#~ j
+

;� j
+

$� j
++ :=

1
2 \

: j
++1
# j

+

; j
+

$ j
++1+ .

The symmetric case results in ;� + :=;+�2 and :~ + :=(:++1)�2=
1&;� + cos .n .

Proof. The proof follows immediately from (4.5) and (4.6). K

6. CONTROL POINTS AND B-SPLINES

The features of the quasi control point construction are ambivalent. On
one hand, their topological structure is a natural generalization of the
familiar tensor product setup. On the other hand, the constraints imposed
on them make them somewhat awkward to deal with. In particular, they
will not be accepted by designers willing to model intuitively rather than to
solve equations. One way out of this dilemma would be to identity the free
parameters explicitly and to use them exclusively as control points. For the
linear space S4

0 this is quite simple. For instance, C1
11 , C1

21 , C1
12 can be

chosen arbitrarily and then all other quasi control points will be deter-
mined uniquely as outlined in the preceding section. Thus, 3n quasi control
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points could be replaced by three proper control points assigned to one of
the n D-patches sharing an extraordinary vertex. However, the fundamental
drawback of this and all similar procedures is that the topology of the
resulting control mesh does not match the patch structure uniformly. By
assigning four control points to one D-patch and only one control point to
each of the remaining ones the natural equivalence of patches would be
violated inadmissibly. So, we propose a different approach, which is both
satisfactory from a theoretical point of view and useful for applications.
The idea is to start with arbitrarily located proper control points c j

11 , c j
21 ,

c j
12 which have exactly the same topological structure as the quasi control

points but do not necessarily comply with the constraints. The next step is
to project these points to the space of quasi control points and then one
can proceed as described above. For instance, a convenient projection can
be defined by selecting those quasi control points which minimize the distance
to the given points with respect to some norm. This projection can be
computed numerically or even analytically, if the Euclidean norm is used.
However, we shall not elaborate on this problem in full generality but confine
ourselves to a more detailed discussion of the linear symmetric case, which
is of particular importance for applications.

The given proper control points c j
11 , c j

21 , c j
12 and the quasi control points

C j
11 , C j

21 , C j
12 , which have to be determined, are collected in vectors, e.g.,

c11 :=[c0
11 , ..., cn&1

11 ]T and analogously for all others. What we are looking
for is an affine invariant projection,

c11 C11 P1 P2 P3 c11

P: \c21+[ \C21+=\P4 P5 P6+\c21+ , (6.1)

c12 C12 P7 P8 P9 c12

mapping proper control points to the space of quasi control points. For
symmetry reasons, it is required that P commutes with both the shift S and
the reflection R, that is

SP=PS, RP=PR,

where with a slight abuse of notation S and R are (3n_3n)-matrices
representing (5.7) and (5.8). SP=PS implies that all n_n-matrices P& ,
&=1, ..., 9, are cyclic, that is there exist vectors p& :=[ p0

& , ..., pn&1
& ]T such

that P jk
& = p j&k

& , j, k=0, ..., n&1. Further, RP=PR yields

p j
1= p& j

1 , p j
2= p& j

3 , p j
4= p& j

7 , p j
5= p& j

9 , p j
6= p& j

8 (6.2)
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by inspection. The analysis of cyclic systems can be simplified considerably
using the discrete Fourier transform p [ p̂ defined by

p̂k := :
n&1

j=0

|& jk
n p j, p j=

1
n

:
n&1

k=0

| jk
n p̂k, |n :=exp(i.n); (6.3)

see [13] for details. Applying it to the space of control points splits (6.1)
into n decoupled 3_3-systems,

ĉk
11 C� k

11 p̂k
1 p̂k

2 p̂k
3 ĉk

11

P� k : \ ĉk
21+[ \C� k

21+=\ p̂k
4 p̂k

5 p̂k
6+\ ĉk

21+ (6.4)

ĉk
12 C� k

12 p̂k
7 p̂k

8 p̂k
9 ĉk

12

and the symmetry conditions (6.2) imply

p̂k
1=p̂k

1, p̂k
2= p̂k

3, p̂k
4=p̂k

7, p̂k
5=p̂k

9, p̂k
6=p̂k

8. (6.5)

By means of (6.3), the constraints on quasi control points as specified in
Definition 5.2 are transformed to

1&|k
n 0 0 C� k

11

\1&:&; (:+;|k
n)�2&1 (:|&1

n +;)�2 +\C� k
21+=0. (6.6)

1&:&; (:|k
n+;)�2 (:+;|&1

n )�2&1 C� k
12

Denoting the above matrix by Q� k, the projection P has to satisfy
Q� kP� k=0. With :=1&; cos .n we find

det Q� k=;(1&|k
n)(cos(k.n)&cos(.n)) (6.7)

and the kernel of Q� k is nontrivial if and only if k # [0, 1, n&1]; thus

P� 2= } } } =P� n&2=0. (6.8)

For k=0 we obtain q̂0 :=ker Q� 0=[1, 1, 1]T and P� 0 :=q̂0[a0
0 , a0

1 , a0
2]. The

symmetry conditions (6.5), the affine invariance of P, and the fact that P� 0

has real entries imply

a0
1=a0

2=(1&a0
0)�2, a0

0 # R. (6.9)

For k=1 we obtain q̂1 :=ker Q� 1=[0, exp(i�), exp(&i�)]T, � :=arg((1+i;
sin .n) |&1�2

n ), and P� 1 :=q̂1[a1
0 , a1

1 , a1
2]. The symmetry conditions (6.5)

imply that a1
0 # R and

a1
1=a1

2=: r exp(i{), (r, {) # R+
0 _[0, 2?). (6.10)
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For k=n&1 we obtain q̂n&1 :=ker Q� n&1=q̂1 and setting P� n&1=P� 1

ensures that P is a real matrix. So the projection P is characterized by four
real-valued parameters a0

0 , a1
0 , r, { and the vectors p1 , ..., p9 given by

p j
1=a0

0 �n

p j
2=(1&a0

0)�2n

p j
3=(1&a0

0)�2n

p j
4=(a0

0+2a1
0 cos( j.n))�n

p j
5=((1&a0

0)+4r cos(�+{+ j.n))�2n (6.11)

p j
6=((1&a0

0)+4r cos(�&{+ j.n))�2n

p j
7=(a0

0+2a1
0 cos( j.n))�n

p j
8=((1&a0

0)+4r cos(�&{& j.n))�2n

p j
9=((1&a0

0)+4r cos(�+{& j.n))�2n

for j=0, ..., n&1. How do we choose the parameters? A natural criterion
is to minimize the distance

:
n&1

j=0

(&C� j
11& ĉ j

11 &2+&C� j
21&ĉ j

21&2+&C� j
12&ĉ j

12 &2) � min. (6.12)

Some elementary calculus yields a0
0= 1

3 , a1
0=0, r= 1

2 , {=&�, and

p j
1= p j

2= p j
3= p j

4= p j
7=1�3n

p j
5= p j

9=(1+3 cos( j.n))�3n
(6.13)

p j
6=(1+3 cos(2�+ j.n))�3n

p j
8=(1+3 cos(2�& j.n))�3n.

Some of the coefficients are negative and, consequently, the quasi control
points, and because of them the spline surface will not necessarily lie in the con-
vex hull of the proper control points. The projection complies with the convex
hull property if the parameters satisfy 0�a0

0�1, |a1
0 |�a0

0�2, r�(1&a0
0)�4. If

this is desired a reasonable choice is a0
0=a1

0=0, r= 1
4, {=&�, yielding

p j
1= p j

4= p j
7=0

p j
2= p j

3=1�2n

p j
5= p j

9=(1+cos( j.n))�2n (6.14)

p j
6=(1+cos(2�+ j.n))�2n

p j
8=(1+cos(2�& j.n))�2n.
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As mentioned above, providing unrestricted control points is of particular
importance for design purposes. As usual, the designer specifies proper control
points and the result is a smooth spline surface. All intermediate steps and,
in particular, the projection to the space of quasi control points, can be
hidden in a black box. Actually, the same process turns out to be equally
useful from a more theoretical point of view. Recall the generation of a
point x( p), p # 0=|_I on the spline surface x, corresponding to a set of
control points c=[ci , i=1, ..., 4*I]. First, quasi control points C are
computed by applying the projection P to the proper control points c.
Then the quasi control points are completed to a set of Be� zier points by
averaging as described in the third section, and finally x( p) is obtained by
evaluating the appropriate Be� zier patch. Combining all three steps yields a
single linear and affine invariant map acting on control points according to

B0 : c [ x # S4
0 , x( p)= :

4*I

i=1

Bi ( p) ci . (6.15)

The functions Bi : 0 [ R are B-splines in the following sense: They are real-
valued, piecewise polynomial, compactly supported, form a partition of unity,
and coincide with ordinary B-splines on the regular parts of the domain.
Partition of unity is an immediate consequence of the fact that the rows of
P sum up to one by construction. Nonnegativity can be achieved using
particular projections P, for instance, (6.14). Further, they provide built-in
smoothness by generating smooth surfaces when combined linearly with
arbitrary spatial control points. They span the complete space S4

0 but do
not form a basis since they are linearly dependent as a consequence of the
rank deficiency of the projection matrix P.

CONCLUSION

Degenerate surface patches are suitable for modeling smooth spline
surfaces. The major benefit of this approach is the capability of modeling
a refineable spline space of arbitrary topological genus provided with a uniform
set of parametric smoothness conditions. The existence of a nontrivial
linear subspace spanned by a family of real-valued compactly supported B-
spline functions favors various applications in both computer aided geometric
design and approximation theory. Disadvantages of the methods are that
it requires polynomials of bi-degree three for modeling C1-surfaces and that
the main curvatures diverge near singularly parametrized surface points.
Recent results show that the approach using singular parametrization can
be generalized to surfaces with continuous curvature [4, 5]. However, the
conditions derived there are highly nonlinear and do not admit a geometrically
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meaningful interpretation. A slightly different approach providing refineable
spline spaces of arbitrary smoothness order is proposed in [20].
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